DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren
dc.contributor.authorGajić, Borislaven
dc.date.accessioned2020-04-27T10:55:11Z-
dc.date.available2020-04-27T10:55:11Z-
dc.date.issued2001-01-01en
dc.identifier.issn0308-2105en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/840-
dc.description.abstractWe present an L-A pair for the Hess-Apel'rot case of a heavy rigid three-dimensional body. Using it, we give an algebro-geometric integration procedure. Generalizing this L-A pair, we obtain a new completely integrable case of the Euler-Poisson equations in dimension four. Explicit formulae for integrals that are in involution are given. This system is a counterexample to one of Ratiu's theorems. A corrected version of this classification theorem is proved.en
dc.publisherCambridge University Press-
dc.relationMinistry of Science and Technology of Serbia, Project 04M03-
dc.relation.ispartofRoyal Society of Edinburgh - Proceedings Aen
dc.titleAn L-A pair for the Hess-Apel'rot system and a new integrable case for the Euler-Poisson equations on so(4) x so (4)en
dc.typeArticleen
dc.identifier.doi10.1017/S0308210500001141en
dc.identifier.scopus2-s2.0-23044531209en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage845en
dc.relation.lastpage855en
dc.relation.issue4en
dc.relation.volume131en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-0295-4743-
crisitem.author.orcid0000-0002-1463-0113-
Show simple item record

SCOPUSTM   
Citations

20
checked on Jul 13, 2024

Page view(s)

57
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.