DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren
dc.contributor.authorGajić, Borislaven
dc.date.accessioned2020-04-27T10:55:10Z-
dc.date.available2020-04-27T10:55:10Z-
dc.date.issued2003-01-01en
dc.identifier.issn1560-3547en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/839-
dc.description.abstractWe present the classical Wagner construction from 19.35 of the curvature tensor for the completely nonholonomic manifolds in both invariant and coordinate way. The starting point is the Shouten curvature tensor for the nonholonomic connection introduced by Vranceanu and Shouten. We illustrate the construction by two mechanical examples: the case of a homogeneous disc rolling without sliding on a horizontal plane and the case of a homogeneous ball rolling without sliding on a fixed sphere. In the second case we study the conditions imposed on the ratio of diameters of the ball and the sphere to obtain a flat space - with the Wagner curvature tensor equal to zero.en
dc.publisherSpringer Link-
dc.relationGeometry and Topology of Manifolds and Integrable Dynamical Systems-
dc.relation.ispartofRegular and Chaotic Dynamicsen
dc.titleThe Wagner curvature tensor in nonholonomic mechanicsen
dc.typeArticleen
dc.identifier.doi10.1070/RD2003v008n01ABEH000229en
dc.identifier.scopus2-s2.0-31344462203en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage105en
dc.relation.lastpage123en
dc.relation.issue1en
dc.relation.volume8en
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-0295-4743-
crisitem.author.orcid0000-0002-1463-0113-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/projects/1643e.htm-
Show simple item record

SCOPUSTM   
Citations

21
checked on Nov 19, 2024

Page view(s)

18
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.