DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren
dc.contributor.authorGajić, Borislaven
dc.date.accessioned2020-04-27T10:55:10Z-
dc.date.available2020-04-27T10:55:10Z-
dc.date.issued2004-10-01en
dc.identifier.issn0002-9327en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/838-
dc.description.abstractA four-dimensional integrable rigid-body system is considered and it is shown that it represents two twisted three-dimensional Lagrange tops. A polynomial Lax representation, which doesn't fit neither in Dubrovin's nor in Adler-van Moerbeke's picture is presented. The algebro-geometric integration procedure is based on deep facts from the geometry of the Prym varieties of double coverings of hyperelliptic curves: Mumford's relation and Mumford-Dalalyan theory. The correspondence between all such coverings with Prym varieties splitted as a sum of two varieties of the same dimension and the integrable hierarchy associated to the initial system is established.en
dc.publisherThe Johns Hopkins University Press-
dc.relationSerbian Ministry of Science and Technology, Project No. 1643-
dc.relation.ispartofAmerican Journal of Mathematicsen
dc.titleThe Lagrange bitop on so(4) × so(4) and geometry of the Prym varietiesen
dc.typeArticleen
dc.identifier.doi10.1353/ajm.2004.0035-
dc.identifier.scopus2-s2.0-5644283665en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage981en
dc.relation.lastpage1004en
dc.relation.issue5en
dc.relation.volume126en
dc.description.rankM21a-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-0295-4743-
crisitem.author.orcid0000-0002-1463-0113-
Show simple item record

SCOPUSTM   
Citations

9
checked on May 22, 2024

Page view(s)

62
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.