DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren
dc.contributor.authorGajić, Borislaven
dc.date.accessioned2020-04-27T10:55:10Z-
dc.date.available2020-04-27T10:55:10Z-
dc.date.issued2005-01-01en
dc.identifier.isbn978-9-812-70216-6en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/837-
dc.description.abstractSkew-symmetric matrix Lax polynomials are considered. Few rigid body systems with such representations are presented. Lagrange bitop is completely integrable four-dimensional rigid body system. Algebro-geometric integration procedure, using Lax representation, for that system is performed. This integration is based on deep facts from the theory of Prym varieties such as the Mumford relation and Mumford-Dalalyan theory. Class of isoholomorphic integrable systems is established and importation class of its perturbations is observed, generalizing classical Hess-Appel’rot system.en
dc.publisherWorld Scientific-
dc.relation.ispartofMathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model: Perspectives of the Balkan Collaborationsen
dc.titleSkew-symmetric lax polynomial matrices and integrable rigid body systemsen
dc.typeBook Chapteren
dc.identifier.doi10.1142/9789812702166_0019en
dc.identifier.scopus2-s2.0-84967367814en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage208en
dc.relation.lastpage219en
item.cerifentitytypePublications-
item.openairetypeBook Chapter-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-0295-4743-
crisitem.author.orcid0000-0002-1463-0113-
Show simple item record

Page view(s)

16
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.