DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren
dc.contributor.authorGajić, Borislaven
dc.date.accessioned2020-04-27T10:55:10Z-
dc.date.available2020-04-27T10:55:10Z-
dc.date.issued2006-01-01en
dc.identifier.issn0010-3616en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/835-
dc.description.abstractWe construct higher-dimensional generalizations of the classical Hess- Appel'rot rigid body system. We give a Lax pair with a spectral parameter leading to an algebro-geometric integration of this new class of systems, which is closely related to the integration of the Lagrange bitop performed by us recently and uses Mumford relation for theta divisors of double unramified coverings. Based on the basic properties satisfied by such a class of systems related to bi-Poisson structure, quasi-homogeneity, and conditions on the Kowalevski exponents, we suggest an axiomatic approach leading to what we call the "class of systems of Hess-Appel'rot type".en
dc.publisherSpringer Link-
dc.relation.ispartofCommunications in Mathematical Physicsen
dc.titleSystems of hess-appel'rot typeen
dc.typeArticleen
dc.identifier.doi10.1007/s00220-006-0024-2en
dc.identifier.scopus2-s2.0-33744776591en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage397en
dc.relation.lastpage435en
dc.relation.issue2en
dc.relation.volume265en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-0295-4743-
crisitem.author.orcid0000-0002-1463-0113-
Show simple item record

SCOPUSTM   
Citations

13
checked on Dec 26, 2024

Page view(s)

17
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.