DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dragović, Vladimir | en |
dc.contributor.author | Gajić, Borislav | en |
dc.date.accessioned | 2020-04-27T10:55:10Z | - |
dc.date.available | 2020-04-27T10:55:10Z | - |
dc.date.issued | 2008-08-01 | en |
dc.identifier.issn | 1560-3547 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/834 | - |
dc.description.abstract | We constructed Hirota-Kimura type discretization of the classical nonholonomic Suslov problem of motion of rigid body fixed at a point. We found a first integral proving integrability. Also, we have shown that discrete trajectories asymptotically tend to a line of discrete analogies of so-called steady-state rotations. The last property completely corresponds to well-known property of the continuous Suslov case. The explicite formulae for solutions are given. In n-dimensional case we give discrete equations. | en |
dc.publisher | Springer Link | - |
dc.relation | Ministry of Science of Republic of Serbia, Project 144014 | - |
dc.relation.ispartof | Regular and Chaotic Dynamics | en |
dc.subject | Hirota-Kimura type discretization | Nonholonomic mechanics | Rigid body | Suslov problem | en |
dc.title | Hirota-Kimura type discretization of the classical nonholonomic Suslov problem | en |
dc.type | Article | en |
dc.identifier.doi | 10.1134/S1560354708040023 | en |
dc.identifier.scopus | 2-s2.0-56549112840 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 250 | en |
dc.relation.lastpage | 256 | en |
dc.relation.issue | 4 | en |
dc.relation.volume | 13 | en |
dc.description.rank | M23 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-0295-4743 | - |
crisitem.author.orcid | 0000-0002-1463-0113 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.