DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dragović, Vladimir | en |
dc.contributor.author | Gajić, Borislav | en |
dc.contributor.author | Jovanović, Božidar | en |
dc.date.accessioned | 2020-04-27T10:55:10Z | - |
dc.date.available | 2020-04-27T10:55:10Z | - |
dc.date.issued | 2009-09-01 | en |
dc.identifier.issn | 1083-4362 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/833 | - |
dc.description.abstract | We prove complete integrability of the Manakov-type SO(n)-invariant geodesic flows on homogeneous spaces SO(n)/SO(k1) ×...× SO(kr), for any choice of k1,...,kr, k1 + ,..., + kr ≤ n. In particular, a new proof of the integrability of a Manakov symmetric rigid body motion around a fixed point is presented. Also, the proof of integrability of the SO(n)-invariant Einstein metrics on SO(k1 + k2 + k3)/SO(k1) × SO(k2) × SO(k3) and on the Stiefel manifolds V (n, k) = SO(n)/SO(k) is given. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Transformation Groups | en |
dc.title | Singular Manakov flows and geodesic flows on homogeneous spaces of SO(N) | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s00031-009-9062-0 | en |
dc.identifier.scopus | 2-s2.0-77951665692 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 513 | en |
dc.relation.lastpage | 530 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 14 | en |
dc.description.rank | M22 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-0295-4743 | - |
crisitem.author.orcid | 0000-0002-1463-0113 | - |
crisitem.author.orcid | 0000-0002-3393-4323 | - |
SCOPUSTM
Citations
10
checked on Dec 26, 2024
Page view(s)
9
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.