DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren
dc.contributor.authorGajić, Borislaven
dc.date.accessioned2020-04-27T10:55:10Z-
dc.date.available2020-04-27T10:55:10Z-
dc.date.issued2009-09-17en
dc.identifier.issn1560-3547en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/832-
dc.description.abstractA class of elliptic curves with associated Lax matrices is considered. A family of dynamical systems on e (3) parametrized by polynomial a with the above Lax matrices are constructed. Five cases from the family are selected by the condition of preserving the standard measure. Three of them are Hamiltonian. It is proved that two other cases are not Hamiltonian in the standard Poisson structure on e (3). Integrability of all five cases is proven. Integration procedures are performed in all five cases. Separation of variables in Sklyanin sense is also given. A connection with Hess-Appel-rot system is established. A sort of separation of variables is suggested for the Hess-Appel-rot system.en
dc.publisherSpringer Link-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relation.ispartofRegular and Chaotic Dynamicsen
dc.subjectElliptic curves | Hess-Appel'rot system | Integrability | L-A pair | Separation of variablesen
dc.titleElliptic curves and a new construction of integrable systemsen
dc.typeArticleen
dc.identifier.doi10.1134/S1560354709040042en
dc.identifier.scopus2-s2.0-70149106816en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage466en
dc.relation.lastpage478en
dc.relation.issue4-5en
dc.relation.volume14en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-0295-4743-
crisitem.author.orcid0000-0002-1463-0113-
Show simple item record

SCOPUSTM   
Citations

2
checked on Jul 13, 2024

Page view(s)

65
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.