DC FieldValueLanguage
dc.contributor.authorOgnjanović, Zoranen
dc.contributor.authorRašković, Miodragen
dc.date.accessioned2020-02-18T20:06:32Z-
dc.date.available2020-02-18T20:06:32Z-
dc.date.issued2000-09-28en
dc.identifier.issn0304-3975en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/82-
dc.description.abstractWe present some first-order probability logics. The logics allow making statements such as P≥sα, with the intended meaning "the probability of truthfulness of a is greater than or equal to s". We describe the corresponding probability models. We give a sound and complete infinitary axiomatic system for the most general of our logics, while for some restrictions of this logic we provide finitary axiomatic systems. We study the decidability of our logics. We discuss some of the related papers.en
dc.publisherElsevier-
dc.relationThis research was supported by the Ministarstvo za nauku i tehnologiju Republike Srbije, through Matematicki institut, grant number 04M02-
dc.relation.ispartofTheoretical Computer Scienceen
dc.subjectCompleteness | First order logic | Possible worlds | Probabilityen
dc.titleSome first-order probability logicsen
dc.typeArticleen
dc.identifier.doi10.1016/S0304-3975(98)00341-7en
dc.identifier.scopus2-s2.0-0038814892en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.grantno04M02-
dc.relation.firstpage191-
dc.relation.lastpage212-
dc.relation.issue1-2-
dc.relation.volume247-
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2508-6480-
Show simple item record

SCOPUSTM   
Citations

78
checked on Dec 26, 2024

Page view(s)

18
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.