DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dragović, Vladimir | en |
dc.contributor.author | Gajić, Borislav | en |
dc.contributor.author | Jovanović, Božidar | en |
dc.date.accessioned | 2020-04-27T10:55:09Z | - |
dc.date.available | 2020-04-27T10:55:09Z | - |
dc.date.issued | 2015-05-19 | en |
dc.identifier.issn | 1560-3547 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/826 | - |
dc.description.abstract | We consider the Euler equations of motion of a free symmetric rigid body around a fixed point, restricted to the invariant subspace given by the zero values of the corresponding linear Noether integrals. In the case of the SO(n − 2)-symmetry, we show that almost all trajectories are periodic and that the motion can be expressed in terms of elliptic functions. In the case of the SO(n − 3)-symmetry, we prove the solvability of the problem by using a recent Kozlov’s result on the Euler-Jacobi-Lie theorem. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Regular and Chaotic Dynamics | en |
dc.subject | Euler equations | Manakov integrals | reduced Poisson space | spectral curve | en |
dc.title | Note on free symmetric rigid body motion | en |
dc.type | Article | en |
dc.identifier.doi | 10.1134/S1560354715030065 | en |
dc.identifier.scopus | 2-s2.0-84934971842 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 293 | en |
dc.relation.lastpage | 308 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 20 | en |
dc.description.rank | M22 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-0295-4743 | - |
crisitem.author.orcid | 0000-0002-1463-0113 | - |
crisitem.author.orcid | 0000-0002-3393-4323 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.