DC FieldValueLanguage
dc.contributor.authorCaenepeel, Stefaanen
dc.contributor.authorFemić, Bojanaen
dc.date.accessioned2020-04-27T10:55:08Z-
dc.date.available2020-04-27T10:55:08Z-
dc.date.issued2005-04-01en
dc.identifier.issn0920-3036en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/822-
dc.description.abstractLet R be a commutative ring. An Azumaya coring consists of a couple (S,C), with S a faithfully flat commutative R-algebra, and an S-coring C satisfying certain properties. If S is faithfully projective, then the dual of C is an Azumaya algebra. Equivalence classes of Azumaya corings form an abelian group, called the Brauer group of Azumaya corings. This group is canonically isomorphic to the second flat cohomology group. We also give algebraic interpretations of the second Amitsur cohomology group and the first Villamayor-Zelinsky cohomology group in terms of corings.en
dc.publisherSpringer Link-
dc.relation.ispartofK-Theoryen
dc.subjectComatrix coring | Descent theory | Galois coringen
dc.titleThe brauer group of azumaya corings and the second cohomology groupen
dc.typeArticleen
dc.identifier.doi10.1007/s10977-005-3108-4en
dc.identifier.scopus2-s2.0-28844442880en
dc.relation.firstpage361en
dc.relation.lastpage393en
dc.relation.issue4en
dc.relation.volume34en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptMathematical Institute of the Serbian Academy of Sciences and Arts-
crisitem.author.orcid0000-0002-5767-1708-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 24, 2024

Page view(s)

13
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.