DC FieldValueLanguage
dc.contributor.authorFemić, Bojanaen
dc.date.accessioned2020-04-27T10:55:07Z-
dc.date.available2020-04-27T10:55:07Z-
dc.date.issued2016-09-01en
dc.identifier.issn0022-4049en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/816-
dc.description.abstractWe prove Eilenberg-Watts Theorem for 2-categories of the representation categories C-Mod of finite tensor categories C. For a consequence we obtain that any autoequivalence of C-Mod is given by tensoring with a representative of some class in the Brauer-Picard group BrPic(C). We introduce bialgebroid categories over C and a cohomology over a symmetric bialgebroid category. This cohomology turns out to be a generalization of the one we developed in a previous paper and moreover, an analogous Villamayor-Zelinsky sequence exists in this setting. In this context, for a symmetric bialgebroid category A, we interpret the middle cohomology group appearing in the third level of the latter sequence. We obtain a group of quasi-monoidal structures on the representation category A-Mod.en
dc.publisherElsevier-
dc.relation.ispartofJournal of Pure and Applied Algebraen
dc.titleEilenberg-Watts Theorem for 2-categories and quasi-monoidal structures for module categories over bialgebroid categoriesen
dc.typeArticleen
dc.identifier.doi10.1016/j.jpaa.2016.02.009en
dc.identifier.scopus2-s2.0-84961157789en
dc.relation.firstpage3156en
dc.relation.lastpage3181en
dc.relation.issue9en
dc.relation.volume220en
dc.description.rankM22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptMathematical Institute of the Serbian Academy of Sciences and Arts-
crisitem.author.orcid0000-0002-5767-1708-
Show simple item record

SCOPUSTM   
Citations

3
checked on Apr 3, 2025

Page view(s)

15
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.