Authors: | Farah, Ilijas | Title: | Completely additive liftings | Journal: | Bulletin of Symbolic Logic | Volume: | 4 | Issue: | 1 | First page: | 37 | Last page: | 54 | Issue Date: | 1-Jan-1998 | ISSN: | 1079-8986 | DOI: | 10.2307/421005 | Abstract: | The purpose of this communication is to survey a theory of liftings, as developed in author's thesis ([8]). The first result in this area was Shelah's construction of a model of set theory in which every automorphism of P(ℕ)/ Fin, where Fin is the ideal of finite sets, is trivial, or inother words, it is induced by a function mapping integers into integers ([33]). (It is a classical result of W. Rudin [31] that under the Continuum Hypothesis there are automorphisms other than trivial ones.) Soon afterwards, Velickovic ([47]), was able to extract from Shelah's argument the fact that every automorphism of P(ℕ)/ Fin with a Baire-measurable lifting has to be trivial. This, for instance, implies that in Solovay's model ([36]) all automorphisms are trivial. Later on, an axiomatic approach was adopted and Shelah's conclusion was drawn first from the Proper Forcing Axiom (PFA) ([34]) and then from the milder Open Coloring Axiom (OCA) and Martin's Axiom (MA) ([48], see §5 for definitions). Both shifts from the quotient P(ℕ)/ Fin to quotients over more general ideals P(ℕ)/I and from automorphisms to arbitrary ho-momorphisms were made by Just in a series of papers ([14]-[17]), motivated by some problems in algebra ([7, pp. 38–39], [43, I.12.11], [45, Q48]) and topology ([46, p. 537]). |
Publisher: | Cambridge University Press |
Show full item record
SCOPUSTM
Citations
11
checked on Dec 3, 2024
Page view(s)
17
checked on Dec 3, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.