DC FieldValueLanguage
dc.contributor.authorFarah, Ilijasen
dc.date.accessioned2020-04-27T10:33:41Z-
dc.date.available2020-04-27T10:33:41Z-
dc.date.issued2002-01-01en
dc.identifier.issn0019-2082en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/800-
dc.description.abstractWhich pairs of quotients over ideals on ℕ can be distinguished without assuming additional set theoretic axioms? Essentially, those that are not isomorphic under the Continuum Hypothesis. A CH-diagonalization method for constructing isomorphisms between certain quotients of countable products of finite structures is developed and used to classify quotients over ideals in a class of generalized density ideals. It is also proved that many analytic ideals give rise to quotients that are countably saturated (and therefore isomorphic under CH).en
dc.publisherUniversity of Illinois-
dc.relationNational Science Foundation (USA), Grant DMS-0070798-
dc.relationPSC-CUNY, Grant #62785-00-31-
dc.relation.ispartofIllinois Journal of Mathematicsen
dc.titleHow many boolean algebras P(ℕ)/I are there?en
dc.typeArticleen
dc.identifier.scopus2-s2.0-0141543842en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage999en
dc.relation.lastpage1035en
dc.relation.issue4en
dc.relation.volume46en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-7703-6931-
Show simple item record

SCOPUSTM   
Citations

23
checked on Nov 24, 2024

Page view(s)

13
checked on Nov 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.