DC FieldValueLanguage
dc.contributor.authorĐordević, Radosaven
dc.contributor.authorRašković, Miodragen
dc.contributor.authorOgnjanović, Zoranen
dc.date.accessioned2020-02-18T20:06:32Z-
dc.date.available2020-02-18T20:06:32Z-
dc.date.issued2004-01-01en
dc.identifier.issn0933-5846en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/78-
dc.description.abstractA prepositional logic is defined which in addition to prepositional language contains a list of probabilistic operators of the form P ≥s (with the intended meaning "the probability is at least s"). The axioms and rules syntactically determine that ranges of probabilities in the corresponding models are always finite. The completeness theorem is proved. It is shown that completeness cannot be generalized to arbitrary theories.en
dc.publisherSpringer Link-
dc.relationMethods of Mathematical Logic for Decision Support in Real Life Situations-
dc.relation.ispartofArchive for Mathematical Logicen
dc.subjectCompleteness | Finite ranges of probabilities | Probabilistic logicen
dc.titleCompleteness theorem for propositional probabilistic models whose measures have only finite rangesen
dc.typeArticleen
dc.identifier.doi10.1007/s00153-004-0217-3en
dc.identifier.scopus2-s2.0-2642511774en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage557-
dc.relation.lastpage563-
dc.relation.volume43-
dc.description.rankM22-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-2508-6480-
Show simple item record

SCOPUSTM   
Citations

16
checked on Jun 21, 2024

Page view(s)

81
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.