DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đordević, Radosav | en |
dc.contributor.author | Rašković, Miodrag | en |
dc.contributor.author | Ognjanović, Zoran | en |
dc.date.accessioned | 2020-02-18T20:06:32Z | - |
dc.date.available | 2020-02-18T20:06:32Z | - |
dc.date.issued | 2004-01-01 | en |
dc.identifier.issn | 0933-5846 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/78 | - |
dc.description.abstract | A prepositional logic is defined which in addition to prepositional language contains a list of probabilistic operators of the form P ≥s (with the intended meaning "the probability is at least s"). The axioms and rules syntactically determine that ranges of probabilities in the corresponding models are always finite. The completeness theorem is proved. It is shown that completeness cannot be generalized to arbitrary theories. | en |
dc.publisher | Springer Link | - |
dc.relation | Methods of Mathematical Logic for Decision Support in Real Life Situations | - |
dc.relation.ispartof | Archive for Mathematical Logic | en |
dc.subject | Completeness | Finite ranges of probabilities | Probabilistic logic | en |
dc.title | Completeness theorem for propositional probabilistic models whose measures have only finite ranges | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s00153-004-0217-3 | en |
dc.identifier.scopus | 2-s2.0-2642511774 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 557 | - |
dc.relation.lastpage | 563 | - |
dc.relation.volume | 43 | - |
dc.description.rank | M22 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0003-2508-6480 | - |
SCOPUSTM
Citations
16
checked on Apr 2, 2025
Page view(s)
23
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.