DC FieldValueLanguage
dc.contributor.authorFarah, Ilijasen
dc.contributor.authorSolecki, Sławomiren
dc.date.accessioned2020-04-27T10:33:40Z-
dc.date.available2020-04-27T10:33:40Z-
dc.date.issued2008-07-15en
dc.identifier.issn0022-1236en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/784-
dc.description.abstractWe show that L0 (φ{symbol}, H) is extremely amenable for any diffused submeasure φ{symbol} and any solvable compact group H. This extends results of Herer-Christensen, and of Glasner and Furstenberg-Weiss. Proofs of these earlier results used spectral theory or concentration of measure. Our argument is based on a new Ramsey theorem proved using ideas coming from combinatorial applications of algebraic topological methods. Using this work, we give an example of a group which is extremely amenable and contains an increasing sequence of compact subgroups with dense union, but which does not contain a Lévy sequence of compact subgroups with dense union. This answers a question of Pestov. We also show that many Lévy groups have non-Lévy sequences, answering another question of Pestov.en
dc.publisherElsevier-
dc.relationNSF, Grant DMS-0400931-
dc.relation.ispartofJournal of Functional Analysisen
dc.subjectBorsuk-Ulam theorem | Extremely amenable groups | L 0 | Ramsey theory | Submeasuresen
dc.titleExtreme amenability of L0, a Ramsey theorem, and Lévy groupsen
dc.typeArticleen
dc.identifier.doi10.1016/j.jfa.2008.03.016en
dc.identifier.scopus2-s2.0-44449121814en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage471en
dc.relation.lastpage493en
dc.relation.issue2en
dc.relation.volume255en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-7703-6931-
Show simple item record

SCOPUSTM   
Citations

13
checked on Dec 26, 2024

Page view(s)

15
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.