DC Field | Value | Language |
---|---|---|
dc.contributor.author | Farah, Ilijas | en |
dc.contributor.author | Toms, Andrew | en |
dc.contributor.author | Törnquist, Asger | en |
dc.date.accessioned | 2020-04-27T10:33:39Z | - |
dc.date.available | 2020-04-27T10:33:39Z | - |
dc.date.issued | 2013-01-01 | en |
dc.identifier.issn | 1073-7928 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/775 | - |
dc.description.abstract | We establish the Borel computability of various C*-algebra invariants, including the Elliott invariant and the Cuntz semigroup. As applications, we deduce that AF algebras are classifiable by countable structures, and that a conjecture of Winter and the second author for nuclear separable simple C*-algebras cannot be disproved by appealing to known standard Borel structures on these algebras. | en |
dc.publisher | Oxford University Press | - |
dc.relation | NSF, Grants DMS-1101144 and DMS-0969246 | - |
dc.relation | Denmarks Natural Sciences Research Council, Grant no. 10-082689/FNU | - |
dc.relation | Marie Curie reintegration grant, no. IRG-249167 | - |
dc.relation.ispartof | International Mathematics Research Notices | en |
dc.title | The descriptive set theory of C*-algebra Invariants | en |
dc.type | Article | en |
dc.identifier.doi | 10.1093/imrn/rns206 | en |
dc.identifier.scopus | 2-s2.0-84898605397 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 5196 | en |
dc.relation.lastpage | 5226 | en |
dc.relation.issue | 22 | en |
dc.relation.volume | 2013 | en |
dc.description.rank | M21a | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0001-7703-6931 | - |
SCOPUSTM
Citations
17
checked on Nov 25, 2024
Page view(s)
22
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.