DC FieldValueLanguage
dc.contributor.authorFarah, Ilijasen
dc.contributor.authorShelah, Saharonen
dc.date.accessioned2020-04-27T10:33:39Z-
dc.date.available2020-04-27T10:33:39Z-
dc.date.issued2014-01-01en
dc.identifier.issn0021-2172en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/771-
dc.description.abstractWe prove that the statement ‘For all Borel ideals I and J on ω, every isomorphism between Boolean algebras P(ω)/I and P(ω)/J has a continuous representation’ is relatively consistent with ZFC. In this model every isomorphism between P(ω)/I and any other quotient P(ω)/J over a Borel ideal is trivial for a number of Borel ideals I on ω.We can also assure that the dominating number, σ, is equal to ℵ1 and that (Formula presented.). Therefore, the Calkin algebra has outer automorphisms while all automorphisms of P(ω)/Fin are trivial.Proofs rely on delicate analysis of names for reals in a countable support iteration of Suslin proper forcings.en
dc.publisherSpringer Link-
dc.relationUnited States–Israel Binational Science Foundation, Grant no. 2010405-
dc.relationNational Science Foundation, Grant no. DMS 1101597-
dc.relation.ispartofIsrael Journal of Mathematicsen
dc.titleTrivial automorphismsen
dc.typeArticleen
dc.identifier.doi10.1007/s11856-014-1048-5en
dc.identifier.scopus2-s2.0-84908513119en
dc.relation.firstpage701en
dc.relation.lastpage728en
dc.relation.issue2en
dc.relation.volume201en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-7703-6931-
Show simple item record

SCOPUSTM   
Citations

10
checked on Dec 26, 2024

Page view(s)

23
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.