DC FieldValueLanguage
dc.contributor.authorCoskey, Samuelen
dc.contributor.authorFarah, Ilijasen
dc.date.accessioned2020-04-27T10:33:39Z-
dc.date.available2020-04-27T10:33:39Z-
dc.date.issued2014-01-01en
dc.identifier.issn0002-9947en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/770-
dc.description.abstractIn 2007 Phillips and Weaver showed that, assuming the Continuum Hypothesis, there exists an outer automorphism of the Calkin algebra. (The Calkin algebra is the algebra of bounded operators on a separable complex Hilbert space, modulo the compact operators.) In this paper we establish that the analogous conclusion holds for a broad family of quotient algebras. Specifically, we will show that assuming the Continuum Hypothesis, if A is a separable algebra which is either simple or stable, then the corona of A has nontrivial automorphisms. We also discuss a connection with cohomology theory, namely, that our proof can be viewed as a computation of the cardinality of a particular derived inverse limit.en
dc.publisherAmerican Mathematical Society-
dc.relation.ispartofTransactions of the American Mathematical Societyen
dc.titleAutomorphisms of corona algebras, and group cohomologyen
dc.typeArticleen
dc.identifier.doi10.1090/S0002-9947-2014-06146-1en
dc.identifier.scopus2-s2.0-84924787468en
dc.relation.firstpage3611en
dc.relation.lastpage3630en
dc.relation.issue7en
dc.relation.volume366en
dc.description.rankM21-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0001-7703-6931-
Show simple item record

SCOPUSTM   
Citations

13
checked on Dec 12, 2024

Page view(s)

22
checked on Dec 12, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.