DC FieldValueLanguage
dc.contributor.authorOgnjanović, Zoranen
dc.contributor.authorMarković, Zoranen
dc.contributor.authorRašković, Miodragen
dc.date.accessioned2020-02-18T20:06:31Z-
dc.date.available2020-02-18T20:06:31Z-
dc.date.issued2005-01-01en
dc.identifier.issn0350-1302en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/76-
dc.description.abstractWe present a propositional probability logic which allows making formulas that speak about imprecise and conditional probabilities. A class of Kripke-like probabilistic models is defined to give semantics to probabilistic formulas. Every possible world of such a model is equipped with a probability space. The corresponding probabilities may have nonstandard values. The proposition "the probability is close to r" means that there is an infinitesimal ε, such that the probability is equal to r-ε (or r+ε). We provide an infinitary axiomatization and prove the corresponding extended completeness theorem.en
dc.publisherMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.ispartofPublications de l'Institut Mathematiqueen
dc.subjectCompleteness | Conditional probability logic | Hardy field | Nonstandard valuesen
dc.titleCompleteness theorem for a logic with imprecise and conditional probabilitiesen
dc.typeArticleen
dc.identifier.doi10.2298/PIM0578035Oen
dc.identifier.scopus2-s2.0-84971577030en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage35-
dc.relation.lastpage49-
dc.relation.issue92-
dc.relation.volume78-
dc.description.rankM24-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-2508-6480-

#### SCOPUSTM Citations

30
checked on Jun 21, 2024

#### Page view(s)

70
checked on May 10, 2024