DC FieldValueLanguage
dc.contributor.authorFarah, Ilijasen
dc.contributor.authorToms, Andrewen
dc.contributor.authorTörnquist, Asgeren
dc.date.accessioned2020-04-27T10:33:38Z-
dc.date.available2020-04-27T10:33:38Z-
dc.date.issued2014-03-17en
dc.identifier.issn0075-4102en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/765-
dc.description.abstractWe bound the Borel cardinality of the isomorphism relation for nuclear simple separable C*-algebras: It is turbulent, yet Borel reducible to the action of the automorphism group of the Cuntz algebra ω2 on its closed subsets. The same bounds are obtained for affine homeomorphism of metrizable Choquet simplexes. As a by-product we recover a result of Kechris and Solecki, namely, that homeomorphism of compacta in the Hilbert cube is Borel reducible to a Polish group action. These results depend intimately on the classification theory of nuclear simple C*-algebras by K-theory and traces. Both of necessity and in order to lay the groundwork for further study on the Borel complexity of C*-algebras, we prove that many standard C*-algebra constructions and relations are Borel, and we prove Borel versions of Kirchberg's ω2$ -stability and embedding theorems. We also find a C*-algebraic witness for a K σ Kσ hard equivalence relation.en
dc.publisherDe Gruyter-
dc.relationNSF, Grant DMS-0969246-
dc.relationThe Austrian Science Fund FWF, Grant no. P 19375-N18-
dc.relationDanish Council for Independent Research (Natural Sciences), Grant no. 10-082689/FNU-
dc.relationMarie Curie re-integration, Grant no. IRG-249167-
dc.relation.ispartofJournal fur die Reine und Angewandte Mathematiken
dc.titleTurbulence, orbit equivalence, and the classification of nuclear C*-algebrasen
dc.typeArticleen
dc.identifier.doi10.1515/crelle-2012-0053en
dc.identifier.scopus2-s2.0-84896802565en
dc.relation.firstpage101en
dc.relation.lastpage146en
dc.relation.issue688en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-7703-6931-
Show simple item record

SCOPUSTM   
Citations

21
checked on Nov 24, 2024

Page view(s)

24
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.