DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bice, Tristan | en |
dc.contributor.author | Farah, Ilijas | en |
dc.date.accessioned | 2020-04-27T10:33:38Z | - |
dc.date.available | 2020-04-27T10:33:38Z | - |
dc.date.issued | 2015-01-01 | en |
dc.identifier.issn | 0362-1588 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/763 | - |
dc.description.abstract | Our motivating question was whether all traces on a U-ultrapower of a C∗-algebra A, where U is a non-principal ultrafilter on N, are necessarily U-limits of traces on A. We show that this is false so long as A has infinitely many extremal traces, and even exhibit a 22ℵ0 size family of such traces on the ultrapower. For this to fail even when A has finitely many traces implies that A contains operators that can be expressed as sums of n + 1 but not n∗-commutators, for arbitrarily large n. We show that this happens for a direct sum of Pedersen-Petersen C∗-algebras, and analyze some other interesting properties of these C-algebras. | en |
dc.publisher | University of Houston | - |
dc.relation.ispartof | Houston Journal of Mathematics | en |
dc.subject | -Algebras | C | Commutators | Traces | Ultrapowers | en |
dc.title | Traces, ultrapowers and the pedersen-petersen C∗-algebras | en |
dc.type | Article | en |
dc.identifier.scopus | 2-s2.0-84957567089 | en |
dc.relation.firstpage | 1175 | en |
dc.relation.lastpage | 1190 | en |
dc.relation.issue | 4 | en |
dc.relation.volume | 41 | en |
dc.description.rank | M23 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0001-7703-6931 | - |
SCOPUSTM
Citations
4
checked on Dec 26, 2024
Page view(s)
14
checked on Dec 26, 2024
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.