DC FieldValueLanguage
dc.contributor.authorFarah, Ilijasen
dc.contributor.authorGoldbring, Isaacen
dc.contributor.authorHart, Bradden
dc.contributor.authorSherman, Daviden
dc.date.accessioned2020-04-27T10:33:38Z-
dc.date.available2020-04-27T10:33:38Z-
dc.date.issued2016-01-01en
dc.identifier.issn0016-2736en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/762-
dc.description.abstractWe examine the properties of existentially closed (Rω-embeddable) II1 factors. In particular, we use the fact that every automorphism of an existentially closed (Rω-embeddable) II1 factor is approximately inner to prove that Th(R) is not modelcomplete. We also show that Th(R) is complete for both finite and infinite forcing and use the latter result to prove that there exist continuum many nonisomorphic existentially closed models of Th(R).en
dc.publisherInstytut Matematyczny Polskiej Akademii Nauk-
dc.relation.ispartofFundamenta Mathematicaeen
dc.subjectContinuous model theory | Existentially closed | II factor 1en
dc.titleExistentially closed II1 factorsen
dc.typeArticleen
dc.identifier.doi10.4064/fm126-12-2015en
dc.identifier.scopus2-s2.0-84959933594en
dc.relation.firstpage173en
dc.relation.lastpage196en
dc.relation.issue2en
dc.relation.volume233en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-7703-6931-
Show simple item record

SCOPUSTM   
Citations

23
checked on Dec 26, 2024

Page view(s)

16
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.