DC FieldValueLanguage
dc.contributor.authorDošen, Kostaen
dc.date.accessioned2020-04-27T10:33:34Z-
dc.date.available2020-04-27T10:33:34Z-
dc.date.issued1988-12-01en
dc.identifier.issn0039-3215en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/725-
dc.description.abstractThe purpose of this paper is to connect the proof theory and the model theory of a family of propositional logics weaker than Heyting's. This family includes systems analogous to the Lambek calculus of syntactic categories, systems of relevant logic, systems related to BCK algebras, and, finally, Johansson's and Heyting's logic. First, sequent-systems are given for these logics, and cut-elimination results are proved. In these sequent-systems the rules for the logical operations are never changed: all changes are made in the structural rules. Next, Hubert-style formulations are given for these logics, and algebraic completeness results are demonstrated with respect to residuated lattice-ordered groupoids. Finally, model structures related to relevant model structures (of Urquhart, Fine, Routley, Meyer, and Maksimova) are given for our logics. These model structures are based on groupoids parallel to the sequent-systems. This paper lays the ground for a kind of correspondence theory for axioms of logics with implication weaker than Heyting's, a correspondence theory analogous to the correspondence theory for modal axioms of normal modal logics. The first part of the paper, which follows, contains the first two sections, which deal with sequent-systems and Hubert-formulations. The second part, due to appear in the next issue of this journal, will contain the third section, which deals with groupoid models.en
dc.publisherSpringer Link-
dc.relation.ispartofStudia Logicaen
dc.titleSequent-systems and groupoid models. Ien
dc.typeArticleen
dc.identifier.doi10.1007/BF00671566en
dc.identifier.scopus2-s2.0-7544222167en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage353en
dc.relation.lastpage385en
dc.relation.issue4en
dc.relation.volume47en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

70
checked on Nov 25, 2024

Page view(s)

13
checked on Nov 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.