DC FieldValueLanguage
dc.contributor.authorDošen, Kostaen
dc.contributor.authorPetrić, Zoranen
dc.date.accessioned2020-04-27T10:33:28Z-
dc.date.available2020-04-27T10:33:28Z-
dc.date.issued2012-12-01en
dc.identifier.issn1005-3867en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/684-
dc.description.abstractIt is shown that the multiplicative monoids of Brauer's centralizer algebras generated out of the basis are isomorphic to monoids of endomorphisms in categories where an endofunctor is adjoint to itself, and where, moreover, a kind of symmetry involving the self-adjoint functor is satisfied. As in a previous paper, of which this is a companion, it is shown that such a symmetric self-adjunction is found in a category whose arrows are matrices, and the functor adjoint to itself is based on the Kronecker product of matrices.en
dc.publisherWorld Scientific-
dc.relationRepresentations of logical structures and formal languages and their application in computing-
dc.relation.ispartofAlgebra Colloquiumen
dc.subjectadjunction | Brauer's centralizer algebras | matrix representation | symmetric groupsen
dc.titleSymmetric self-adjunctions and matricesen
dc.typeArticleen
dc.identifier.doi10.1142/S1005386712000855-
dc.identifier.scopus2-s2.0-84868595598en
dc.relation.firstpage1051en
dc.relation.lastpage1082en
dc.relation.issueSPL. ISS. 1en
dc.relation.volume19en
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-2049-9892-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174026e.php-
crisitem.project.fundingProgramDirectorate for Social, Behavioral & Economic Sciences-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Social, Behavioral & Economic Sciences/1740267-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 19, 2024

Page view(s)

17
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.