DC FieldValueLanguage
dc.contributor.authorDodig, Marijaen
dc.contributor.authorStošić, Markoen
dc.date.accessioned2020-04-27T10:33:25Z-
dc.date.available2020-04-27T10:33:25Z-
dc.date.issued2009-01-01en
dc.identifier.issn0308-1087en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/663-
dc.description.abstractIn this article we study the possible similarity classes of a square matrix when an arbitrary submatrix is prescribed. As the main result, we solve the even more general problem of describing the possible strict equivalence classes of a regular pencil when a subpencil is prescribed. This result improves the result by [Cabral and Silva, Similarity invariants of completions of submatrices, Lin. Alg. Appl. 169 (1992), 151-161.], since an explicit solution is obtained without any existential quantifiers involved, over an algebraically closed field. In fact, the sufficiency of the conditions obtained by [Gohberg, Kaashoek and Van Schangen, Eigenvalues of completions of submatrices, Lin. Multilin. Alg. 25 (1989), 55-70.] is proved. In the proof, we use various results and techniques including matrix pencils completions, Kronecker canonical form, Littlewood-Richardson coefficients, Young diagrams, the solution of the Carlson problem and localization techniques.en
dc.publisherTaylor & Francis-
dc.relationFCT, Grant no. SFRH/ BPD/26607/2006-
dc.relation.ispartofLinear and Multilinear Algebraen
dc.subjectCompletions | Littlewood-Richardson coefficient | Localization | Matrix pencilsen
dc.titleSimilarity class of a matrix with a prescribed submatrixen
dc.typeArticleen
dc.identifier.doi10.1080/03081080801987726en
dc.identifier.scopus2-s2.0-70449361097en
dc.relation.firstpage217en
dc.relation.lastpage245en
dc.relation.issue3en
dc.relation.volume57en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-8209-6920-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

SCOPUSTM   
Citations

18
checked on Nov 11, 2024

Page view(s)

14
checked on Nov 11, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.