DC FieldValueLanguage
dc.contributor.authorDodig, Marijaen
dc.date.accessioned2020-04-27T10:33:24Z-
dc.date.available2020-04-27T10:33:24Z-
dc.date.issued2013-02-01en
dc.identifier.issn0308-1087en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/655-
dc.description.abstractIn this article we give a complete description of the possible feedback invariants of a completely controllable pair of matrices submitted to an additive perturbation of low rank. This result is valid over an arbitrary field.en
dc.publisherTaylor & Francis-
dc.relationFCT, project ISFL-1-1431-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relation.ispartofLinear and Multilinear Algebraen
dc.subjectcompletion of matrices | feedback equivalence | low rank perturbationsen
dc.titleRank distance problem for pairs of matricesen
dc.typeArticleen
dc.identifier.doi10.1080/03081087.2012.670237en
dc.identifier.scopus2-s2.0-84870934815en
dc.relation.firstpage205en
dc.relation.lastpage215en
dc.relation.issue2en
dc.relation.volume61en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-8209-6920-
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 11, 2024

Page view(s)

12
checked on Nov 11, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.