DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dodig, Marija | en |
dc.contributor.author | Stošić, Marko | en |
dc.date.accessioned | 2020-04-27T10:33:23Z | - |
dc.date.available | 2020-04-27T10:33:23Z | - |
dc.date.issued | 2019-01-01 | en |
dc.identifier.issn | 0895-4798 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/646 | - |
dc.description.abstract | In this paper we resolve a classical, long-standing open general matrix pencil completion problem in a minimal case. The problem consists of describing the possible Kronecker invariants of a pencil with a prescribed subpencil, and the restriction we impose is not structural but is only on the number of added rows and columns. We completely resolve the problem in the case when the numbers of added rows and columns are the minimal possible, such that the resulting pencil can have the prescribed number of row and column minimal indices. | en |
dc.publisher | Society for Industrial and Applied Mathematics | - |
dc.relation | FCT project ISFL-1-1431 | - |
dc.relation | Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems | - |
dc.relation | Geometry, Education and Visualization With Applications | - |
dc.relation.ispartof | SIAM Journal on Matrix Analysis and Applications | en |
dc.subject | Completion of matrix pencils | Majorization of partitions | en |
dc.title | The general matrix pencil completion problem: A minimal case | en |
dc.type | Article | en |
dc.identifier.doi | 10.1137/17M1155041 | en |
dc.identifier.scopus | 2-s2.0-85064405020 | en |
dc.relation.firstpage | 347 | en |
dc.relation.lastpage | 369 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 40 | en |
dc.description.rank | M21 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0001-8209-6920 | - |
crisitem.author.orcid | 0000-0002-4464-396X | - |
SCOPUSTM
Citations
9
checked on Nov 23, 2024
Page view(s)
19
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.