DC FieldValueLanguage
dc.contributor.authorDodig, Marijaen
dc.contributor.authorStošić, Markoen
dc.date.accessioned2020-04-27T10:33:23Z-
dc.date.available2020-04-27T10:33:23Z-
dc.date.issued2019-01-01en
dc.identifier.issn0895-4798en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/646-
dc.description.abstractIn this paper we resolve a classical, long-standing open general matrix pencil completion problem in a minimal case. The problem consists of describing the possible Kronecker invariants of a pencil with a prescribed subpencil, and the restriction we impose is not structural but is only on the number of added rows and columns. We completely resolve the problem in the case when the numbers of added rows and columns are the minimal possible, such that the resulting pencil can have the prescribed number of row and column minimal indices.en
dc.publisherSociety for Industrial and Applied Mathematics-
dc.relationFCT project ISFL-1-1431-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relationGeometry, Education and Visualization With Applications-
dc.relation.ispartofSIAM Journal on Matrix Analysis and Applicationsen
dc.subjectCompletion of matrix pencils | Majorization of partitionsen
dc.titleThe general matrix pencil completion problem: A minimal caseen
dc.typeArticleen
dc.identifier.doi10.1137/17M1155041en
dc.identifier.scopus2-s2.0-85064405020en
dc.relation.firstpage347en
dc.relation.lastpage369en
dc.relation.issue1en
dc.relation.volume40en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-8209-6920-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 23, 2024

Page view(s)

19
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.