DC FieldValueLanguage
dc.contributor.authorDodig, Marijaen
dc.contributor.authorStošić, Markoen
dc.date.accessioned2020-04-27T10:33:23Z-
dc.date.available2020-04-27T10:33:23Z-
dc.date.issued2019-09-15en
dc.identifier.issn0024-3795en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/645-
dc.description.abstractIn this paper we study the possible feedback invariants of linear systems obtained as a result of series connections of two linear systems. We solve the problem in a generic case, and we conjecture general solution. We explore the role and importance of the Littlewood-Richardson coefficients in the solution.en
dc.publisherElsevier-
dc.relationFCT, project ISFL-1-1431-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relationGeometry, Education and Visualization With Applications-
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectCarlson problem | Completion of matrices | Linear systems | Littlewood-Richardson coefficienten
dc.titleFeedback invariants of series connected systemsen
dc.typeArticleen
dc.identifier.doi10.1016/j.laa.2019.04.031en
dc.identifier.scopus2-s2.0-85065135699en
dc.relation.firstpage244en
dc.relation.lastpage269en
dc.relation.volume577en
dc.description.rankM21-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-8209-6920-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 27, 2024

Page view(s)

15
checked on Nov 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.