DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dodig, Marija | en |
dc.contributor.author | Stošić, Marko | en |
dc.date.accessioned | 2020-04-27T10:33:23Z | - |
dc.date.available | 2020-04-27T10:33:23Z | - |
dc.date.issued | 2019-09-15 | en |
dc.identifier.issn | 0024-3795 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/645 | - |
dc.description.abstract | In this paper we study the possible feedback invariants of linear systems obtained as a result of series connections of two linear systems. We solve the problem in a generic case, and we conjecture general solution. We explore the role and importance of the Littlewood-Richardson coefficients in the solution. | en |
dc.publisher | Elsevier | - |
dc.relation | FCT, project ISFL-1-1431 | - |
dc.relation | Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems | - |
dc.relation | Geometry, Education and Visualization With Applications | - |
dc.relation.ispartof | Linear Algebra and Its Applications | en |
dc.subject | Carlson problem | Completion of matrices | Linear systems | Littlewood-Richardson coefficient | en |
dc.title | Feedback invariants of series connected systems | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.laa.2019.04.031 | en |
dc.identifier.scopus | 2-s2.0-85065135699 | en |
dc.relation.firstpage | 244 | en |
dc.relation.lastpage | 269 | en |
dc.relation.volume | 577 | en |
dc.description.rank | M21 | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.orcid | 0000-0001-8209-6920 | - |
crisitem.author.orcid | 0000-0002-4464-396X | - |
SCOPUSTM
Citations
2
checked on Nov 27, 2024
Page view(s)
15
checked on Nov 27, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.