DC FieldValueLanguage
dc.contributor.authorBožin, Vladimiren
dc.contributor.authorKarapetrović, Bobanen
dc.date.accessioned2020-04-26T19:36:36Z-
dc.date.available2020-04-26T19:36:36Z-
dc.date.issued2018-01-01en
dc.identifier.issn0002-9939en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/601-
dc.description.abstractThe well-known conjecture due to B. Korenblum about the maximum principle in Bergman space Ap states that for 0 < p < ∞ there exists a constant 0 < c < 1 with the following property. If f and g are holomorphic functions in the unit disk D such that |f(z)| ≤ |g(z)| for all c < |z| < 1, then ‖f‖Ap ≤ ‖g‖Ap. Hayman proved Korenblum’s conjecture for p = 2, and Hinkkanen generalized this result by proving the conjecture for all 1 ≤ p < ∞. The case 0 < p < 1 of the conjecture has so far remained open. In this paper we resolve this remaining case of the conjecture by proving that Korenblum’s maximum principle in Bergman space Ap does not hold when 0 < p < 1.en
dc.publisherAmerian Mathematial Soiety-
dc.relationAnalysis and algebra with applications-
dc.relation.ispartofProceedings of the American Mathematical Societyen
dc.subjectBergman spaces | Korenblum’s maximum principleen
dc.titleFailure of korenblum’s maximum principle in bergman spaces with small exponentsen
dc.typeArticleen
dc.identifier.doi10.1090/proc/13946en
dc.identifier.scopus2-s2.0-85044344444en
dc.relation.firstpage2577en
dc.relation.lastpage2584en
dc.relation.issue6en
dc.relation.volume146en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

SCOPUSTM   
Citations

8
checked on Dec 20, 2024

Page view(s)

23
checked on Dec 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.