DC Field | Value | Language |
---|---|---|
dc.contributor.author | Božin, Vladimir | en |
dc.contributor.author | Karapetrović, Boban | en |
dc.date.accessioned | 2020-04-26T19:36:36Z | - |
dc.date.available | 2020-04-26T19:36:36Z | - |
dc.date.issued | 2018-01-15 | en |
dc.identifier.issn | 0022-1236 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/600 | - |
dc.description.abstract | It is well known that the Hilbert matrix operator H is a bounded operator from the Bergman space Ap into Ap if and only if 2<p<∞. In [5] it was shown that the norm of the Hilbert matrix operator H on the Bergman space Ap is equal to [Formula presented], when 4≤p<∞, and it was also conjectured that ‖H‖Ap→Ap=[Formula presented], when 2<p<4. In this paper we prove this conjecture. | en |
dc.publisher | Elsevier | - |
dc.relation | Analysis and algebra with applications | - |
dc.relation.ispartof | Journal of Functional Analysis | en |
dc.subject | Bergman spaces | Hilbert matrix | en |
dc.title | Norm of the Hilbert matrix on Bergman spaces | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.jfa.2017.08.005 | en |
dc.identifier.scopus | 2-s2.0-85028300382 | en |
dc.relation.firstpage | 525 | en |
dc.relation.lastpage | 543 | en |
dc.relation.issue | 2 | en |
dc.relation.volume | 274 | en |
dc.description.rank | M21a | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
SCOPUSTM
Citations
18
checked on Apr 1, 2025
Page view(s)
16
checked on Jan 30, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.