DC FieldValueLanguage
dc.contributor.authorBlagojević, Pavleen
dc.contributor.authorMatschke, Benjaminen
dc.contributor.authorZiegler, Günteren
dc.date.accessioned2020-04-26T19:36:33Z-
dc.date.available2020-04-26T19:36:33Z-
dc.date.issued2011-04-01en
dc.identifier.issn0001-8708en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/576-
dc.description.abstractWe prove the following optimal colorful Tverberg-Vrećica type transversal theorem: For prime r and for any k+1 colored collections of points Cl in Rd,Cl= Cili |Cli|=(r-1)(d-k+1)+1,|Cli| ≤ r-1, l=0...,k, there are partitions of the collections Cl into colorful sets F1l...,Frl such that there is a k-plane that meets all the convex hulls conv(Flj),under the assumption that r(d-k) is even or k=0 Along the proof we obtain three results of independent interest: We present two alternative proofs for the special case k=0 (our optimal colored Tverberg theorem (2009) [2]), calculate the cohomological index for joins of chessboard complexes, and establish a new Borsuk-Ulam type theorem for.(Zp)m-equivariant bundles that generalizes results of Volovikov (1996) [17] and Živaljević(1999)[21].en
dc.publisherElsevier-
dc.relationAdvanced Techniques of Cryptology, Image Processing and Computational Topology for Information Security-
dc.relation.ispartofAdvances in Mathematicsen
dc.subjectBorsuk-Ulam type theorems | Chessboard complexes | Colored Tverberg theorem | Equivariant cohomology | Fadell-Husseini index | Transversal problemsen
dc.titleOptimal bounds for a colorful Tverberg-Vrećica type problemen
dc.typeArticleen
dc.identifier.doi10.1016/j.aim.2011.01.009en
dc.identifier.scopus2-s2.0-79952036902en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage5198en
dc.relation.lastpage5215en
dc.relation.issue6en
dc.relation.volume226en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174008e.php-
crisitem.project.fundingProgramDirectorate for Education & Human Resources-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Education & Human Resources/1740089-
crisitem.author.orcid0000-0003-3649-9897-
Show simple item record

SCOPUSTM   
Citations

28
checked on Nov 7, 2024

Page view(s)

14
checked on Nov 8, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.