DC FieldValueLanguage
dc.contributor.authorBlagojević, Pavleen
dc.contributor.authorMatschke, Benjaminen
dc.contributor.authorZiegler, Günteren
dc.date.accessioned2020-04-26T19:36:33Z-
dc.date.available2020-04-26T19:36:33Z-
dc.date.issued2011-08-01en
dc.identifier.issn0166-8641en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/575-
dc.description.abstractWe prove that any continuous map of an N-dimensional simplex ΔN with colored vertices to a d-dimensional manifold M must map r points from disjoint rainbow faces of ΔN to the same point in M: For this we have to assume that N≥(r-1)(d+1), no r vertices of ΔN get the same color, and our proof needs that r is a prime. A face of ΔN is a rainbow face if all vertices have different colors.This result is an extension of our recent "new colored Tverberg theorem", the special case of M=R{double-Struck}d. It is also a generalization of Volovikov's 1996 topological Tverberg theorem for maps to manifolds, which arises when all color classes have size 1 (i.e., without color constraints); for this special case Volovikov's proof, as well as ours, works when r is a prime power.en
dc.publisherElsevier-
dc.relationEuropean Union’s Seventh Framework Programme (FP7/2007-2013)/ERC, Grant agreement No. 247029-SDModels-
dc.relationAdvanced Techniques of Cryptology, Image Processing and Computational Topology for Information Security-
dc.relation.ispartofTopology and its Applicationsen
dc.subjectColored Tverberg problem | Deleted product/join configuration space | Equivariant cohomology | Fadell-Husseini index | Serre spectral sequenceen
dc.titleA tight colored Tverberg theorem for maps to manifoldsen
dc.typeArticleen
dc.identifier.doi10.1016/j.topol.2011.05.016en
dc.identifier.scopus2-s2.0-79959591649en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage1445en
dc.relation.lastpage1452en
dc.relation.issue12en
dc.relation.volume158en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174008e.php-
crisitem.project.fundingProgramDirectorate for Education & Human Resources-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Education & Human Resources/1740089-
crisitem.author.orcid0000-0003-3649-9897-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 7, 2024

Page view(s)

12
checked on Nov 8, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.