DC FieldValueLanguage
dc.contributor.authorVelimirović, Jelenaen_US
dc.contributor.authorVelimirović, Lazaren_US
dc.contributor.authorPetkovski, Ivanaen_US
dc.date.accessioned2026-02-05T11:49:08Z-
dc.date.available2026-02-05T11:49:08Z-
dc.date.issued2025-
dc.identifier.isbn979-8-3315-9356-8-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5738-
dc.description.abstractThis paper proposes a data-driven approach to predict session-level EV energy demand using contextual station data and user behavior from historical logs. A large realistic dataset and a time-aware, user-level anti-leakage split ensured robust evaluation. The XGBoost model outperformed other regressors, offering accurate forecasts without vehicle telemetry. This scalable method enables operators to predict energy demand reliably, supporting smarter EV charging network management and allowing future integration of detailed user or technical data.en_US
dc.publisherIEEEen_US
dc.subjectEV charging station | XGBoost | Energy Demand Predictionen_US
dc.titleXGBoost Session-Level Energy Demand Prediction for EV Charging Stations Using Behavioral and Contextual Dataen_US
dc.typeConference Paperen_US
dc.relation.conference33rd Telecommunications Forum (TELFOR), Belgrade, Serbia, 25-26 November 2025en_US
dc.relation.publicationProceedings of the 33rd Telecommunications Forum (TELFOR)en_US
dc.identifier.doi10.1109/TELFOR67910.2025.11314443-
dc.contributor.affiliationComputer Scienceen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage572-
dc.relation.lastpage575-
dc.description.rankM33-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeConference Paper-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-3745-3033-
crisitem.author.orcid0000-0001-8737-1928-
crisitem.author.orcid0000-0001-7692-8436-
Show simple item record

Page view(s)

15
checked on Feb 13, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.