DC FieldValueLanguage
dc.contributor.authorIvan Stošićen_US
dc.contributor.authorIvan Damnjanovićen_US
dc.contributor.authorRanđelović, Žarkoen_US
dc.date.accessioned2026-01-26T11:50:42Z-
dc.date.available2026-01-26T11:50:42Z-
dc.date.issued2024-05-22-
dc.identifier.issn0354-5180-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5731-
dc.description.abstractAn expression is any mathematical formula that contains certain formal variables and operations to be executed in a specified order. In computer science, it is usually convenient to represent each expression in the form of an expression tree. Here, we consider only arithmetic expressions, i.e., those that contain only the four standard arithmetic operations: addition, subtraction, multiplication and division, alongside additive inversion. We first provide certain theoretical results concerning the equivalence of such expressions and then disclose a $Θ(n^2)$ algorithm that computes the number of inequivalent arithmetic expressions on $n$ distinct variables.en_US
dc.relation.ispartofFilomaten_US
dc.subjectarithmetic operation | expression tree | inequivalent expressions | number of expressions; Computer Science - Discrete Mathematics; Computer Science - Discrete Mathematics; Mathematics - Combinatorics; Mathematics - Number Theoryen_US
dc.titleCounting the number of inequivalent arithmetic expressions on $n$ variablesen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL2503949S-
dc.identifier.scopus2-s2.0-85218766348-
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-0893-0347-
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.