| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Ivan Damnjanović | en_US |
| dc.contributor.author | Ranđelović, Žarko | en_US |
| dc.date.accessioned | 2026-01-26T11:49:11Z | - |
| dc.date.available | 2026-01-26T11:49:11Z | - |
| dc.date.issued | 2022 | - |
| dc.identifier.issn | 0354-5180 | - |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5730 | - |
| dc.description.abstract | Among all trees on $n$ vertices with a given degree sequence, how do we maximise or minimise the sum over all adjacent pairs of vertices $x$ and $y$ of $f(\mathrm{deg} x, \mathrm{deg} y)$? Here $f$ is a fixed symmetric function satisfying a 'monotonicity' condition that \[ f(x, a) + f(y, b) > f(y, a) + f(x, b) \quad \mbox{for any $x > y$ and $a > b$} . \] These functions arise naturally in several areas of graph theory, particularly chemical graph theory. Wang showed that the so-called 'greedy' tree maximises this quantity, while an 'alternating greedy' tree minimises it. Our aim in this paper is to solve the inverse problem: we characterise precisely which trees are extremal for these two problems. | en_US |
| dc.publisher | Faculty of Sciences and Mathematics, University of Niš, Serbia | en_US |
| dc.relation.ispartof | Filomat | en_US |
| dc.subject | adjacent vertices | algorithm | construction | degree sequence | extremal problem | graph invariant | tree; Mathematics - Combinatorics; Mathematics - Combinatorics | en_US |
| dc.title | An inverse result for Wang's theorem on extremal trees | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.2298/FIL2403085D | - |
| dc.identifier.scopus | 2-s2.0-85177078154 | - |
| dc.description.rank | M22 | - |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.grantfulltext | none | - |
| item.openairetype | Article | - |
| item.fulltext | No Fulltext | - |
| crisitem.author.orcid | 0000-0002-0893-0347 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.