DC FieldValueLanguage
dc.contributor.authorIvan Damnjanovićen_US
dc.contributor.authorRanđelović, Žarkoen_US
dc.date.accessioned2026-01-26T11:49:11Z-
dc.date.available2026-01-26T11:49:11Z-
dc.date.issued2022-
dc.identifier.issn0354-5180-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5730-
dc.description.abstractAmong all trees on $n$ vertices with a given degree sequence, how do we maximise or minimise the sum over all adjacent pairs of vertices $x$ and $y$ of $f(\mathrm{deg} x, \mathrm{deg} y)$? Here $f$ is a fixed symmetric function satisfying a 'monotonicity' condition that \[ f(x, a) + f(y, b) > f(y, a) + f(x, b) \quad \mbox{for any $x > y$ and $a > b$} . \] These functions arise naturally in several areas of graph theory, particularly chemical graph theory. Wang showed that the so-called 'greedy' tree maximises this quantity, while an 'alternating greedy' tree minimises it. Our aim in this paper is to solve the inverse problem: we characterise precisely which trees are extremal for these two problems.en_US
dc.publisherFaculty of Sciences and Mathematics, University of Niš, Serbiaen_US
dc.relation.ispartofFilomaten_US
dc.subjectadjacent vertices | algorithm | construction | degree sequence | extremal problem | graph invariant | tree; Mathematics - Combinatorics; Mathematics - Combinatoricsen_US
dc.titleAn inverse result for Wang's theorem on extremal treesen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL2403085D-
dc.identifier.scopus2-s2.0-85177078154-
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-0893-0347-
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.