DC FieldValueLanguage
dc.contributor.authorLeader, Imreen_US
dc.contributor.authorRanđelović, Žarkoen_US
dc.contributor.authorTan, Ta Shengen_US
dc.date.accessioned2026-01-26T11:44:13Z-
dc.date.available2026-01-26T11:44:13Z-
dc.date.issued2024-
dc.identifier.issn0012-365X-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5729-
dc.description.abstractHow many graphs on an n-point set can we find such that any two have connected intersection? Berger, Berkowitz, Devlin, Doppelt, Durham, Murthy and Vemuri showed that the maximum is exactly 1/2<sup>n−1</sup> of all graphs. Our aim in this short note is to give a ‘directed’ version of this result; we show that a family of oriented graphs such that any two have strongly-connected intersection has size at most 1/3<sup>n</sup> of all oriented graphs. We also show that a family of graphs such that any two have Hamiltonian intersection has size at most 1/2<sup>n</sup> of all graphs, verifying a conjecture of the above authors.en_US
dc.publisherElsevieren_US
dc.relation.ispartofDiscrete Mathematicsen_US
dc.subjectHamiltonian-intersecting | Strongly connecteden_US
dc.titleA Note on Hamiltonian-intersecting families of graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2024.114160-
dc.identifier.scopus2-s2.0-85198333391-
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-0893-0347-
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.