DC FieldValueLanguage
dc.contributor.authorVelimirović, Jelenaen_US
dc.contributor.authorVelimirović, Lazaren_US
dc.contributor.authorStajić, Zoran P.en_US
dc.date.accessioned2025-12-26T09:35:19Z-
dc.date.available2025-12-26T09:35:19Z-
dc.date.issued2025-
dc.identifier.isbn979-8-3315-4416-4-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5723-
dc.description.abstractThis paper presents a data-driven approach for predicting congestion at electric vehicle charging stations using XGBoost. By combining real-world usage data with synthetically generated sessions and modeling personalized, time-based usage patterns, our method improves accuracy and interpretability. Cross-validation and residual analysis confirm strong performance comparing to similar models. This approach led to useful predictions that are practical and user-centered, and extends the possibilities for forecasting within emerging forms of mobility and energy systems.en_US
dc.publisherIEEEen_US
dc.subjectEV charging station | XGboost | Predicting congestionen_US
dc.titlePrediction of EV Charging Stations Congestion using XGBoost Approachen_US
dc.typeConference Paperen_US
dc.relation.conference17th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), 22-24 October 2025en_US
dc.identifier.doi10.1109/TELSIKS65061.2025.11240742-
dc.contributor.affiliationComputer Scienceen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage209-
dc.relation.lastpage212-
dc.description.rankM33-
item.openairetypeConference Paper-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0002-3745-3033-
crisitem.author.orcid0000-0001-8737-1928-
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.