DC FieldValueLanguage
dc.contributor.authorRandjelović, Branislav M.en_US
dc.contributor.authorSimjanović, Dušan J.en_US
dc.contributor.authorVesić, Nenaden_US
dc.contributor.authorDjurišić, Ivanaen_US
dc.contributor.authorVlahović, Branislav D.en_US
dc.date.accessioned2025-12-25T10:32:11Z-
dc.date.available2025-12-25T10:32:11Z-
dc.date.issued2025-
dc.identifier.issn2075-1680-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5708-
dc.description.abstractConformal mappings between Riemannian spaces ¯RN and RN are defined by the explicit transformation of the metric tensor of the space ¯RN to the metric tensor of the space RN . Geodesic mapping between these two Riemannian spaces is a transformation that transforms any geodesic line of the space ¯RN to a geodesic line of the space RN . In this research, we defined an m-conformal line of a Riemannian space, which is geodesic if m = 0. Based on this definition, we involved the concept of ( ¯m, m)-conformal mapping as a transformation ¯RN → RN in which any ¯m-conformal line of the space ¯RN transforms to an m-conformal line of the space RN . The result of this research is the establishment of three invariants for these mappings. At the end of this research, we gave an example of a scalar geometrical object which may be used in physics.en_US
dc.publisherMDPIen_US
dc.relation.ispartofAxiomsen_US
dc.subjectmapping | Riemannian space | invariant | variationen_US
dc.titleOn (m¯, m)-Conformal Mappingsen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/axioms14090652-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage652-
dc.relation.issue9-
dc.relation.volume14-
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-7598-9058-
Show simple item record

Page view(s)

18
checked on Jan 29, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.