DC FieldValueLanguage
dc.contributor.authorXu, Shujiangen_US
dc.contributor.authorLuo, Xiaominen_US
dc.contributor.authorWang, Lianhaien_US
dc.contributor.authorMihaljević, Miodrag J.en_US
dc.contributor.authorZhang, Shuhuien_US
dc.contributor.authorShao, Weien_US
dc.contributor.authorWang, Qizhengen_US
dc.date.accessioned2025-12-25T09:55:10Z-
dc.date.available2025-12-25T09:55:10Z-
dc.date.issued2026-
dc.identifier.isbn978-981-95-3536-1-
dc.identifier.isbn978-981-95-3537-8-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5703-
dc.description.abstractAs the most popular blockchain-based decentralized platform currently, decentralized finance (DeFi) constructs an open and transparent financial ecosystem. Due to its inherent openness, DeFi is also vulnerable to security threats such as transaction fraud. Although the existing detection methods for DeFi anomaly behavior can ensure the security of the DeFi system in certain specific application scenarios, they still suffer from limitations including high misjudgment and insufficient generalization ability. To avoid the above weaknesses, a hybrid model named VAE-BiLSTM is proposed for DeFi anomaly detection. The model integrates the dimensionality reduction ability of variational autoencoder (VAE) with the sequence modeling ability of bidirectional long short-term memory network (BiLSTM) to collaboratively capture of multi-modal anomaly behavior characteristics. Furthermore, the dynamic time warping and Bayesian optimization algorithm are employed to enhance the ability to detect anomaly behaviors. The experimental results show that the F1 score of the proposed model reaches 87%. Compared with the existing methods, the VAE-BiLSTM model exhibits stronger generalization ability and higher detection precision.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofseriesLecture Notes in Computer Scienceen_US
dc.subjectBiLSTM | DeFi Anomaly Detection | VAEen_US
dc.titleVAE-BiLSTM: A Hybrid Model for DeFi Anomaly Detection Combining VAE and BiLSTMen_US
dc.typeConference Paperen_US
dc.relation.conference27th International Conference, ICICS 2025, Nanjing, China, October 29–31, 2025-
dc.relation.publicationInformation and Communications Securityen_US
dc.identifier.doi10.1007/978-981-95-3537-8_19-
dc.identifier.scopus2-s2.0-105022103754-
dc.contributor.affiliationComputer Scienceen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage340-
dc.relation.lastpage358-
dc.relation.volumeLNCS, 16219-
dc.description.rankM33-
item.openairetypeConference Paper-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-3047-3020-
Show simple item record

Page view(s)

10
checked on Jan 3, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.