DC FieldValueLanguage
dc.contributor.authorFemić, Bojanaen_US
dc.contributor.authorHalbig, Sebastianen_US
dc.date.accessioned2025-12-24T17:39:35Z-
dc.date.available2025-12-24T17:39:35Z-
dc.date.issued2025-01-01-
dc.identifier.issn0350-1302-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5696-
dc.description.abstractThe bicategorical point of view provides a natural setting for many concepts in the representation theory of monoidal categories. We show that centers of twisted bimodule categories correspond to categories of 2- dimensional natural transformations and modifications between the deloopings of the twisting functors. This explains conceptually the lifting of (rigid) dualities to centers of twisted bimodule categories. Inspired by the notion of (pre)bimonoidal functors due to McCurdy and Street and by bilax functors of Aguiar and Mahajan, we study 2-dimensional functors which are simultaneously lax and colax with a compatibility condition. Our approach is build upon a 2-categorical Yang–Baxter operator. We show how this concept, which we call a bilax functor, generalizes many known notions from the theory of Hopf algebras. We propose a 2-category of bilax functors whose 1-cells generalize Yetter–Drinfel’d modules in ordinary categories. We prove that the 2-category of bilax functors from the trivial 2-category is isomorphic to the 2-category of bimonads, and construct a faithful 2-functor from the latter to the 2-category of mixed distributive laws of Power and Watanabe.en_US
dc.publisherBelgrade: Mathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.subjectbicategories | bimonads | bimonoidal functors | center categories | Yang–Baxter operatorsen_US
dc.titleCATEGORICAL CENTERS AND YETTER–DRINFEL’D-MODULES AS 2-CATEGORICAL (BI)LAX STRUCTURESen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM2531001F-
dc.identifier.scopus2-s2.0-105008037646-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage1-
dc.relation.lastpage34-
dc.relation.issue131-
dc.relation.volume117-
dc.description.rankM22-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Institute of the Serbian Academy of Sciences and Arts-
crisitem.author.orcid0000-0002-5767-1708-
Show simple item record

Page view(s)

11
checked on Dec 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.