DC FieldValueLanguage
dc.contributor.authorBlagojević, Pavleen_US
dc.contributor.authorSadovek, Nikolaen_US
dc.date.accessioned2025-12-24T17:26:57Z-
dc.date.available2025-12-24T17:26:57Z-
dc.date.issued2025-
dc.identifier.issn0021-2172-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5693-
dc.description.abstractA decade ago two groups of authors, Karasev, Hubard and Aronov and Blagojević and Ziegler, have shown that the regular convex partitions of a Euclidean space into n parts yield a solution to the generalised Nandakumar and Ramana-Rao conjecture when n is a prime power. This was obtained by parametrising the space of regular equipartitions of a given convex body with the classical configuration space. Now, we repeat the process of regular convex equipartitions many times, first partitioning the Euclidean space into n<inf>1</inf> parts, then each part into n<inf>2</inf> parts, and so on. In this way we obtain iterated convex equipartions of a given convex body into n = n<inf>1</inf> ⋯ n<inf>k</inf> parts. Such iterated partitions are parametrised by the (wreath) product of classical configuration spaces. We develop a new configuration space–test map scheme for solving the generalised Nandakumar and Ramana-Rao conjecture using the Hausdorff metric on the space of iterated convex equipartions. The new scheme yields a solution to the conjecture if and only if all the n<inf>i</inf>’s are powers of the same prime. In particular, for the failure of the scheme outside prime power case we give three different proofs.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofIsrael Journal of Mathematicsen_US
dc.titleConvex equipartitions inspired by the little cubes operaden_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11856-025-2785-3-
dc.identifier.scopus2-s2.0-105009537717-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.description.rankM22-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-3649-9897-
Show simple item record

Page view(s)

8
checked on Jan 9, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.