DC FieldValueLanguage
dc.contributor.authorDizdarević, Manuela Muzikaen_US
dc.contributor.authorTimotijević, Marinkoen_US
dc.contributor.authorŽivaljević, Radeen_US
dc.date.accessioned2025-12-24T16:55:44Z-
dc.date.available2025-12-24T16:55:44Z-
dc.date.issued2025-
dc.identifier.issn1450-9628-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5689-
dc.description.abstractConway and Lagarias observed that a triangular region T<inf>2</inf>(n) in a hexagonal lattice admits a signed tiling by 3-in-line polyominoes (tribones) if and only if n ∈ {3<sup>2</sup>d−1,3<sup>2</sup>d}<inf>d</inf>∈N. We apply the theory of Gröbner bases over integers to show that T<inf>3</inf>(n), a three dimensional lattice tetrahedron of edge-length n, admits a signed tiling by tribones if and only if n ∈ {3<sup>3</sup>d−2,3<sup>3</sup>d−1,3<sup>3</sup>d}<inf>d</inf>∈N. More generally we study Gröbner lattice-point enumerators of lattice polytopes and show that they are (modular) quasipolynomials in the case of k-in-line polyominoes. As an example of the “unusual cancelation phenomenon”, arising only in signed tilings, we exhibit a configuration of 15 tribones in the 3-space such that exactly one lattice point is covered by an odd number of tiles.en_US
dc.publisherUniversity of Kragujevac - Faculty of Scienceen_US
dc.relationScience Fund of the Republic of Serbia, Grant No. 7744592, Integrability and Extremal Problems in Mechanics, Geometry and Combinatorics - MEGIC.en_US
dc.relation.ispartofKragujevac Journal of Mathematicsen_US
dc.subjectGröbner bases | Lattice-point enumerators | Signed polyomino tilingen_US
dc.titleGRÖBNER LATTICE-POINT ENUMERATORS AND SIGNED TILING BY k-IN-LINE POLYOMINOESen_US
dc.typeArticleen_US
dc.identifier.doi10.46793/KgJMat2503.443D-
dc.identifier.scopus2-s2.0-105014648660-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage443-
dc.relation.lastpage464-
dc.relation.issue3-
dc.relation.volume49-
dc.description.rankM21-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

Page view(s)

10
checked on Jan 10, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.