| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Dizdarević, Manuela Muzika | en_US |
| dc.contributor.author | Timotijević, Marinko | en_US |
| dc.contributor.author | Živaljević, Rade | en_US |
| dc.date.accessioned | 2025-12-24T16:55:44Z | - |
| dc.date.available | 2025-12-24T16:55:44Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.issn | 1450-9628 | - |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5689 | - |
| dc.description.abstract | Conway and Lagarias observed that a triangular region T<inf>2</inf>(n) in a hexagonal lattice admits a signed tiling by 3-in-line polyominoes (tribones) if and only if n ∈ {3<sup>2</sup>d−1,3<sup>2</sup>d}<inf>d</inf>∈N. We apply the theory of Gröbner bases over integers to show that T<inf>3</inf>(n), a three dimensional lattice tetrahedron of edge-length n, admits a signed tiling by tribones if and only if n ∈ {3<sup>3</sup>d−2,3<sup>3</sup>d−1,3<sup>3</sup>d}<inf>d</inf>∈N. More generally we study Gröbner lattice-point enumerators of lattice polytopes and show that they are (modular) quasipolynomials in the case of k-in-line polyominoes. As an example of the “unusual cancelation phenomenon”, arising only in signed tilings, we exhibit a configuration of 15 tribones in the 3-space such that exactly one lattice point is covered by an odd number of tiles. | en_US |
| dc.publisher | University of Kragujevac - Faculty of Science | en_US |
| dc.relation | Science Fund of the Republic of Serbia, Grant No. 7744592, Integrability and Extremal Problems in Mechanics, Geometry and Combinatorics - MEGIC. | en_US |
| dc.relation.ispartof | Kragujevac Journal of Mathematics | en_US |
| dc.subject | Gröbner bases | Lattice-point enumerators | Signed polyomino tiling | en_US |
| dc.title | GRÖBNER LATTICE-POINT ENUMERATORS AND SIGNED TILING BY k-IN-LINE POLYOMINOES | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.46793/KgJMat2503.443D | - |
| dc.identifier.scopus | 2-s2.0-105014648660 | - |
| dc.contributor.affiliation | Mechanics | en_US |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
| dc.relation.firstpage | 443 | - |
| dc.relation.lastpage | 464 | - |
| dc.relation.issue | 3 | - |
| dc.relation.volume | 49 | - |
| dc.description.rank | M21 | - |
| item.openairetype | Article | - |
| item.fulltext | No Fulltext | - |
| item.grantfulltext | none | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.cerifentitytype | Publications | - |
| crisitem.author.orcid | 0000-0001-9801-8839 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.