DC FieldValueLanguage
dc.contributor.authorIlić, Velimiren_US
dc.contributor.authorStojković, Lazar S.en_US
dc.date.accessioned2025-12-24T16:08:28Z-
dc.date.available2025-12-24T16:08:28Z-
dc.date.issued2025-
dc.identifier.issn1089-7798-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5682-
dc.description.abstractWe provide the computationally efficient general explicit formula for the error exponent function of an integer order ρ and its normalized version, the ρ-mutual information, which is applicable for additive noise channels with discrete inputs. In particular, we consider the additive white Gaussian and exponential noise channels with various modulation formats. We show that the error exponent function and the ρ-mutual information follow the same qualitative behavior as the Shannon mutual information but, in contrast to the Shannon case, can be expressed in a closed-form that does not impose estimation. We further apply the results to the analysis of the Shannon-Gallager-Berlekamp limiting rate for the sphere packing bound on the minimum error probability, which is the limit of the ρ-mutual information when ρ tends to infinity.en_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Communications Lettersen_US
dc.subjectadditive exponential noise | additive white Gaussian noise | Gallager error exponent | generalized cutoff rate | mutual informationen_US
dc.titleOn the Gallager Error Exponent Function and the ρ-Mutual Information of Additive Noise Channelsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LCOMM.2025.3618546-
dc.identifier.scopus2-s2.0-105019683133-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage2890-
dc.relation.lastpage2893-
dc.relation.issue12-
dc.relation.volume29-
dc.description.rankM21-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0002-4705-5856-
Show simple item record

Page view(s)

10
checked on Jan 8, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.