DC FieldValueLanguage
dc.contributor.authorStević, Stevoen_US
dc.date.accessioned2025-12-24T14:06:15Z-
dc.date.available2025-12-24T14:06:15Z-
dc.date.issued2025-
dc.identifier.issn2473-6988-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5680-
dc.description.abstractMany difference equations of the form x<inf>n</inf>+<inf>k</inf> = f(x<inf>n</inf>+<inf>k</inf><inf>−1</inf>, . . ., x<inf>n</inf>), n ∈ N, where k ∈ N, model some phenomena in nature and society. The most interesting cases usually occur when the function f satisfies the condition f(x, . . ., x) = x on its domain of definition. Because of this the difference equations x<inf>n</inf>+<inf>k</inf> ≤ f(x<inf>n</inf>+<inf>k</inf><inf>−1</inf>, . . ., x<inf>n</inf>) and x<inf>n</inf>+<inf>k</inf> ≥ f(x<inf>n</inf>+<inf>k</inf><inf>−1</inf>, . . ., x<inf>n</inf>) are of some interest. If f is a smooth function, then it can be approximated by a linear function. Motivated by some concrete examples, here we mostly consider the sequences that satisfy the linear difference inequality k X a<inf>j</inf>x<inf>n</inf>+<inf>l</inf><inf>− j</inf> ≥ 0, n ∈ N<inf>0</inf>, j=1 where k ∈ N<inf>2</inf>, l ∈ N<inf>0</inf>, and the coefficients a<inf>j</inf> ∈ R, j = 2, k − 1, a<inf>1</inf>, a<inf>k</inf> ∈ R \ {0}, satisfy the condition <sup>Pk</sup><inf>j</inf><inf>=1</inf> a<inf>j</inf> = 0.en_US
dc.publisherAIMS Pressen_US
dc.relation.ispartofAims Mathematicsen_US
dc.subjectbounded sequences | constant coefficients | difference equations | linear difference inequalitiesen_US
dc.titleLinear difference inequalities with constant coefficients with the sum equal to zeroen_US
dc.typeArticleen_US
dc.identifier.doi10.3934/math.20251176-
dc.identifier.scopus2-s2.0-105022118226-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage26744-
dc.relation.lastpage26766-
dc.relation.issue11-
dc.relation.volume10-
dc.description.rankM21a-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

Page view(s)

47
checked on Feb 16, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.