| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Stević, Stevo | en_US |
| dc.date.accessioned | 2025-12-24T14:06:15Z | - |
| dc.date.available | 2025-12-24T14:06:15Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.issn | 2473-6988 | - |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5680 | - |
| dc.description.abstract | Many difference equations of the form x<inf>n</inf>+<inf>k</inf> = f(x<inf>n</inf>+<inf>k</inf><inf>−1</inf>, . . ., x<inf>n</inf>), n ∈ N, where k ∈ N, model some phenomena in nature and society. The most interesting cases usually occur when the function f satisfies the condition f(x, . . ., x) = x on its domain of definition. Because of this the difference equations x<inf>n</inf>+<inf>k</inf> ≤ f(x<inf>n</inf>+<inf>k</inf><inf>−1</inf>, . . ., x<inf>n</inf>) and x<inf>n</inf>+<inf>k</inf> ≥ f(x<inf>n</inf>+<inf>k</inf><inf>−1</inf>, . . ., x<inf>n</inf>) are of some interest. If f is a smooth function, then it can be approximated by a linear function. Motivated by some concrete examples, here we mostly consider the sequences that satisfy the linear difference inequality k X a<inf>j</inf>x<inf>n</inf>+<inf>l</inf><inf>− j</inf> ≥ 0, n ∈ N<inf>0</inf>, j=1 where k ∈ N<inf>2</inf>, l ∈ N<inf>0</inf>, and the coefficients a<inf>j</inf> ∈ R, j = 2, k − 1, a<inf>1</inf>, a<inf>k</inf> ∈ R \ {0}, satisfy the condition <sup>Pk</sup><inf>j</inf><inf>=1</inf> a<inf>j</inf> = 0. | en_US |
| dc.publisher | AIMS Press | en_US |
| dc.relation.ispartof | Aims Mathematics | en_US |
| dc.subject | bounded sequences | constant coefficients | difference equations | linear difference inequalities | en_US |
| dc.title | Linear difference inequalities with constant coefficients with the sum equal to zero | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.3934/math.20251176 | - |
| dc.identifier.scopus | 2-s2.0-105022118226 | - |
| dc.contributor.affiliation | Mathematics | en_US |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
| dc.relation.firstpage | 26744 | - |
| dc.relation.lastpage | 26766 | - |
| dc.relation.issue | 11 | - |
| dc.relation.volume | 10 | - |
| dc.description.rank | M21a | - |
| item.fulltext | No Fulltext | - |
| item.cerifentitytype | Publications | - |
| item.grantfulltext | none | - |
| item.openairetype | Article | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| crisitem.author.orcid | 0000-0002-7202-9764 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.