| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Milićević, Luka | en_US |
| dc.date.accessioned | 2025-12-24T13:56:10Z | - |
| dc.date.available | 2025-12-24T13:56:10Z | - |
| dc.date.issued | 2025-01-01 | - |
| dc.identifier.issn | 0305-0041 | - |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5678 | - |
| dc.description.abstract | Let G and H be finite-dimensional vector spaces over F<inf>p</inf>. A subset A ⊆ G × H is said to be transverse if all of its rows {x ∈ G: (x, y) ∈ A}, y ∈ H, are subspaces of G and all of its columns {y ∈ H: (x, y) ∈ A}, x ∈ G, are subspaces of H. As a corollary of a bilinear version of the Bogolyubov argument, Gowers and the author proved that dense transverse sets contain bilinear varieties of bounded codimension. In this paper, we provide a direct combinatorial proof of this fact. In particular, we improve the bounds and evade the use of Fourier analysis and Freiman’s theorem and its variants. | en_US |
| dc.publisher | Cambridge University Press | en_US |
| dc.relation.ispartof | Mathematical Proceedings of the Cambridge Philosophical Society | en_US |
| dc.title | A note on transverse sets and bilinear varieties | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1017/S0305004125101771 | - |
| dc.identifier.scopus | 2-s2.0-105023137539 | - |
| dc.contributor.affiliation | Mathematics | en_US |
| dc.description.rank | M22 | - |
| item.openairetype | Article | - |
| item.fulltext | No Fulltext | - |
| item.grantfulltext | none | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.cerifentitytype | Publications | - |
| crisitem.author.orcid | 0000-0002-1427-7241 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.