DC FieldValueLanguage
dc.contributor.authorMilićević, Lukaen_US
dc.date.accessioned2025-12-24T13:56:10Z-
dc.date.available2025-12-24T13:56:10Z-
dc.date.issued2025-01-01-
dc.identifier.issn0305-0041-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5678-
dc.description.abstractLet G and H be finite-dimensional vector spaces over F<inf>p</inf>. A subset A ⊆ G × H is said to be transverse if all of its rows {x ∈ G: (x, y) ∈ A}, y ∈ H, are subspaces of G and all of its columns {y ∈ H: (x, y) ∈ A}, x ∈ G, are subspaces of H. As a corollary of a bilinear version of the Bogolyubov argument, Gowers and the author proved that dense transverse sets contain bilinear varieties of bounded codimension. In this paper, we provide a direct combinatorial proof of this fact. In particular, we improve the bounds and evade the use of Fourier analysis and Freiman’s theorem and its variants.en_US
dc.publisherCambridge University Pressen_US
dc.relation.ispartofMathematical Proceedings of the Cambridge Philosophical Societyen_US
dc.titleA note on transverse sets and bilinear varietiesen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/S0305004125101771-
dc.identifier.scopus2-s2.0-105023137539-
dc.contributor.affiliationMathematicsen_US
dc.description.rankM22-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0002-1427-7241-
Show simple item record

Page view(s)

9
checked on Jan 8, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.