DC FieldValueLanguage
dc.contributor.authorPanina, G.en_US
dc.contributor.authorŽivaljević, Radeen_US
dc.date.accessioned2025-12-24T13:04:52Z-
dc.date.available2025-12-24T13:04:52Z-
dc.date.issued2025-03-01-
dc.identifier.issn1061-9208-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5670-
dc.description.abstractAbstract: The classical Ky Fan theorem is a combinatorial equivalent of the Borsuk–Ulam theorem. It is a generalization and extension of Tucker’s lemma and, just like its predecessor, it pinpoints important properties of antipodal colorings of vertices of a triangulated sphere. Here we describe generalizations of Ky Fan theorem for the case when the sphere is replaced by the total space of a triangulated sphere bundle.en_US
dc.publisherSpringer Linken_US
dc.relationScience Fund of the Republic of Serbia, Grant No. 7744592, Integrability and Extremal Problems in Mechanics, Geometry and Combinatorics – MEGIC.en_US
dc.relation.ispartofRussian Journal of Mathematical Physicsen_US
dc.titleKy Fan Theorem for Sphere Bundlesen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S1061920825600138-
dc.identifier.scopus2-s2.0-105004190419-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage141-
dc.relation.lastpage149-
dc.relation.volume32-
dc.description.rankM22-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

Page view(s)

10
checked on Jan 10, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.