| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Panina, G. | en_US |
| dc.contributor.author | Živaljević, Rade | en_US |
| dc.date.accessioned | 2025-12-24T13:04:52Z | - |
| dc.date.available | 2025-12-24T13:04:52Z | - |
| dc.date.issued | 2025-03-01 | - |
| dc.identifier.issn | 1061-9208 | - |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5670 | - |
| dc.description.abstract | Abstract: The classical Ky Fan theorem is a combinatorial equivalent of the Borsuk–Ulam theorem. It is a generalization and extension of Tucker’s lemma and, just like its predecessor, it pinpoints important properties of antipodal colorings of vertices of a triangulated sphere. Here we describe generalizations of Ky Fan theorem for the case when the sphere is replaced by the total space of a triangulated sphere bundle. | en_US |
| dc.publisher | Springer Link | en_US |
| dc.relation | Science Fund of the Republic of Serbia, Grant No. 7744592, Integrability and Extremal Problems in Mechanics, Geometry and Combinatorics – MEGIC. | en_US |
| dc.relation.ispartof | Russian Journal of Mathematical Physics | en_US |
| dc.title | Ky Fan Theorem for Sphere Bundles | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1134/S1061920825600138 | - |
| dc.identifier.scopus | 2-s2.0-105004190419 | - |
| dc.contributor.affiliation | Mechanics | en_US |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
| dc.relation.firstpage | 141 | - |
| dc.relation.lastpage | 149 | - |
| dc.relation.volume | 32 | - |
| dc.description.rank | M22 | - |
| item.openairetype | Article | - |
| item.fulltext | No Fulltext | - |
| item.grantfulltext | none | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.cerifentitytype | Publications | - |
| crisitem.author.orcid | 0000-0001-9801-8839 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.