DC FieldValueLanguage
dc.contributor.authorHorváth, Eszter K.en_US
dc.contributor.authorKwuida, Leonarden_US
dc.contributor.authorŠešelja, Branimiren_US
dc.contributor.authorTepavčević, Andrejaen_US
dc.date.accessioned2025-12-24T12:48:19Z-
dc.date.available2025-12-24T12:48:19Z-
dc.date.issued2025-
dc.identifier.issn0165-0114-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5666-
dc.description.abstractStarting from a poset P and a set A, we introduce P-sets as a natural generalization of Ω-sets. A P-set on A is defined by adding to A a special map from A<sup>2</sup> to P, which generalizes the classical equality relation. We prove that P-sets on A are naturally obtained from centralized closure systems in a family of all weak equivalences on A. Moreover, for every P-set there is a canonical representation in which the used centralized closure system replaces the poset P. Further, we present a classification of all P-sets by the family of cuts, where A and P are fixed. Different P-sets may have equal collections of cut sets. Necessary and sufficient conditions under which this happens are presented; i.e., all P-sets are classified according to the equality of collections of cut sets.en_US
dc.publisherElsevieren_US
dc.relation.ispartofFuzzy Sets and Systemsen_US
dc.subjectCentralized closure system | Cut sets | Poset | Weak equivalencesen_US
dc.titleP-setsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.fss.2024.109244-
dc.identifier.scopus2-s2.0-85212325664-
dc.contributor.affiliationComputer Scienceen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage109244-
dc.relation.volume503-
dc.description.rankM21a+-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0002-5716-604X-
Show simple item record

Page view(s)

9
checked on Jan 9, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.