DC FieldValueLanguage
dc.contributor.authorStošić, Markoen_US
dc.contributor.authorSułkowski, Piotren_US
dc.date.accessioned2025-12-24T12:43:58Z-
dc.date.available2025-12-24T12:43:58Z-
dc.date.issued2025-
dc.identifier.issn0550-3213-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5665-
dc.description.abstractWe relate invariants of torus knots to the counts of a class of lattice paths, which we call generalized Schröder paths. We determine generating functions of such paths, located in a region determined by a type of a torus knot under consideration, and show that they encode colored HOMFLY-PT polynomials of this knot. The generators of uncolored HOMFLY-PT homology correspond to a basic set of such paths. Invoking the knots-quivers correspondence, we express generating functions of such paths as quiver generating series, and also relate them to quadruply-graded knot homology. Furthermore, we determine corresponding A-polynomials, which provide algebraic equations and recursion relations for generating functions of generalized Schröder paths. The lattice paths of our interest explicitly enumerate BPS states associated to knots via brane constructions, as well as encode 3-dimensional N=2 theories.en_US
dc.publisherElsevieren_US
dc.relationScience Fund of the Republic of Serbia, Project no. 7749891, GWORDS – “Graphical Languages”en_US
dc.relation.ispartofNuclear Physics Ben_US
dc.titleTorus knots and generalized Schröder pathsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.nuclphysb.2025.116814-
dc.identifier.scopus2-s2.0-85217151288-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage116814-
dc.relation.volume1012-
dc.description.rankM22-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

Page view(s)

11
checked on Jan 10, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.