DC FieldValueLanguage
dc.contributor.authorBlagojević, Pavleen
dc.contributor.authorLück, Wolfgangen
dc.contributor.authorZiegler, Günteren
dc.date.accessioned2020-04-26T19:36:32Z-
dc.date.available2020-04-26T19:36:32Z-
dc.date.issued2014-01-01en
dc.identifier.issn1753-8416en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/564-
dc.description.abstractWe study the Fadell-Husseini index of the configuration space F(Rd, n) with respect to various subgroups of the symmetric group Sn. For p prime and k ≥ 1, we compute IndexZ/p(F(Rd, p); Fp) and partially describe Index(Z/p)k (F(Rd, pk); Fp). In this process, we obtain results of independent interest, including: (1) an extended equivariant Goresky-MacPherson formula, (2) a complete description of the top homology of the partition lattice Πp as an Fp[Zp]-module, and (3) a generalized Dold theorem for elementary abelian groups. The results on the Fadell-Husseini index yield a new proof of the Nandakumar and Ramana Rao conjecture for primes. For n = pk a prime power, we compute the Lusternik-Schnirelmann category cat(F(Rd, n)/Sn) = (d - 1)(n - 1). Moreover, we extend coincidence results related to the Borsuk-Ulam theorem, as obtained by Cohen and Connett, Cohen and Lusk, and Karasev and Volovikov.en
dc.publisherLondon Mathematical Society-
dc.relationAdvanced Techniques of Cryptology, Image Processing and Computational Topology for Information Security-
dc.relationEuropean Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement no. 247029-SDModels-
dc.relation.ispartofJournal of Topologyen
dc.titleEquivariant topology of configuration spacesen
dc.typeArticleen
dc.identifier.doi10.1112/jtopol/jtv002en
dc.identifier.scopus2-s2.0-84930848978en
dc.relation.firstpage414en
dc.relation.lastpage456en
dc.relation.issue2en
dc.relation.volume8en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174008e.php-
crisitem.project.fundingProgramDirectorate for Education & Human Resources-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Education & Human Resources/1740089-
crisitem.author.orcid0000-0003-3649-9897-
Show simple item record

SCOPUSTM   
Citations

15
checked on Nov 7, 2024

Page view(s)

16
checked on Nov 8, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.